# 105 - Construct Binary Tree from Preorder and Inorder Traversal
解法一 - Recursion
解題思路如下:
為何我們需要 preorder 跟 inorder?因為 preorder 讓我們知道 root 是哪個 node,而 inorder 讓我們知道哪些屬於 left subtree,哪些屬於 right subtree。
知道哪些屬於左子樹和哪些屬於右子樹後,我們就分別再呼叫兩次 buildTree 把左右子樹分別建好。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
if(preorder.empty()) return NULL;
// decide root
TreeNode* root = new TreeNode(preorder[0]);
// build left & right subtree
int rootPosInorder = find(inorder.begin(), inorder.end(), preorder[0]) - inorder.begin();
vector<int> leftPre(&preorder[1], &preorder[1+rootPosInorder]);
vector<int> leftIn(&inorder[0], &inorder[rootPosInorder]);
vector<int> rightPre(&preorder[1+rootPosInorder], &preorder[preorder.size()]);
vector<int> rightIn(&inorder[rootPosInorder+1], &inorder[inorder.size()]);
/*
for(int i=0; i<leftPre.size(); i++)
cout << leftPre[i] << " ";
cout << endl;
for(int i=0; i<leftIn.size(); i++)
cout << leftIn[i] << " ";
cout << endl;
for(int i=0; i<rightPre.size(); i++)
cout << rightPre[i] << " ";
cout << endl;
for(int i=0; i<rightIn.size(); i++)
cout << rightIn[i] << " ";
cout << endl;
*/
root->left = buildTree(leftPre, leftIn);
root->right = buildTree(rightPre, rightIn);
return root;
}
};
// idea: use preorder to know root, use inorder to know left and right subtree
不過這麼做的效率並不是很高:
Runtime: 32 ms, faster than 26.24% of C++ online submissions for Construct Binary Tree from Preorder and Inorder Traversal. Memory Usage: 70.2 MB, less than 7.35% of C++ online submissions for Construct Binary Tree from Preorder and Inorder Traversal.
Previous# 104 - Maximum Depth of Binary TreeNext# 106 - Construct Binary Tree from Inorder and Postorder Traversal
Last updated
Was this helpful?